Skip to main content Skip to navigation
Washington State University National Center for Transportation Infrastructure Durability & Life-Extension (TriDurLE)

Forterra Resilience & Sustainability Webinar

Presentation

Sustainability is key to building a brighter future for our families and our communities. What we do today affects tomorrow. This presentation covers the three pillars of sustainability, and provides principles of resilience to support our efforts to build a sustainable infrastructure. In terms of environmental sustainability, this means being conscious of our world and the environment we live in. For economic sustainability it means looking beyond this year’s budget and evaluating true cost of ownership. For societal sustainability, it means limiting delays and improving social convenience while keeping user safety a top priority. Lastly, an integral part of sustainability is ensuring that our infrastructure is resilient enough to resist and defend our communities from present and future threats. Coming from the drainage world, the presenter will offer comparisons and case studies based on storm drainage products on the market today. This presentation is based on researched performed by a task group composed of member companies of the American Concrete Pipe Association, of which Joseph Updike co-led.

About the Speaker

Joseph Updike (EIT) is a Technical Resource Engineer with Forterra, the largest precast concrete pipe manufacturer in North America. Joseph specializes in providing lunch and learns, resources, and support for DOTs, municipalities, and consultants. Additionally, this role includes speaking at universities to allow up and coming engineers a glimpse of the drainage industry, and how critical it is to our infrastructure. In his short career, Joseph has served as a co-chair for an ACPA task group on Resilience & Sustainability, and has spoken at ACPA’s Pipe School in 2020. He has served on multiple ASCE committees including the Infrastructure Resilience Division, Committee for Cold-Regions Engineering, and is currently the vice president of the Black Hills ASCE Chapter. Joseph is a December 2019 graduate of the South Dakota School of Mines & Technology where he earned his B.S. in Civil Engineering. Outside of work, Joseph dedicates time to his wife, family, and church community in the Blacks Hills of South Dakota, but has also found time to explore his interests in novel and poetry writing. In 2020, Joseph won first prize in a national poetry contest, and looks forward to many other opportunities. Looking to the future, Joseph hopes to earn his PE license in Structural Engineering, and continue exploring ways to improve the world around him through engineering.

Poro-Elastic modeling and measurement of rebar corrosion and crack formation using high frequency ultrasonics

Webinar title: Poro-Elastic modeling and measurement of rebar corrosion and crack formation using high frequency ultrasonics

Speaker: Pierre-Philippe Beaujean, Ph.D., Florida Atlantic University

Pierre-Philippe Beaujean is a Professor at the Department of Ocean and Mechanical Engineering, at Florida Atlantic University. He specializes in the field of underwater acoustics, acoustics in sediments and porous solids, signal processing, sonar design, data analysis, machine health monitoring, and vibrations control. Dr. Beaujean is an active member of the Acoustical Society of America (ASA), and of the Institute of Electrical and Electronic Engineers (IEEE).

REGISTER NOW

Licensing deal aims to enable safer winter roads with more sustainable chemicals

An anti-icing technology developed at Washington State University is being licensed by Fusione Corp., a Massachusetts-based snow and ice operations company, with the goal of creating environmentally responsible and sustainable snow and ice road treatments. Read More

Recycling Industrial Byproduct to Create Environmentally Friendly Concrete

Civil & environmental engineering doctoral student Zhipeng Li is conducting critical research on the novel use of fly ash in concrete, funded by the University Transportation Center TriDurLE (Transportation Infrastructure Durability and Life Extension). His journey since arriving at WSU—in spite of personal challenges—is a true testament of the academic fortitude of a young scientist.

Zhipeng grew up in China and earned a bachelor’s degree in civil engineering in 2014 from Wuhan University of Science & Technology and a master’s degree in geotechnical engineering in 2017 from Wuhan Polytechnic University. Zhipeng came to the U.S. in 2019 to earn his doctoral degree in civil engineering from Washington State University, where he works in Xianming Shi’s lab studying geopolymers.

“I work with geopolymer composites that are modified by trace amounts of graphene oxide,” says Zhipeng. “In particular, I am researching the use of fly ash-based geopolymer composites, which are more sustainable and greener and have great potential to replace the conventional Portland cement.”

Fly ash is an industrial solid waste and environmental pollutant released by factories and thermal power plants as a by-product of power generation. The disposal of fly ash has become a serious environmental hazard, thus the utilization of the waste material for new products is an economical and environmentally friendly solution. Considerable research has been undertaken on its potential use.

The use of fly ash to fully replace cement in mortar and concrete could result in lower water demand due to the spherical shape of fly ash and could also greatly increase strength and durability due to reduced porosity. Ongoing research on the use of fly ash is exploring its durability under variable weather conditions and the addition of nanomaterials to enhance durability. Zhipeng is currently working on a project for TriDurLE titled “Design of Fly Ash Based Geopolymer Concrete-filled FRP Tube Composite for Highly Durable and Environmentally Friendly Infrastructure.”

Zhipeng is also an avid technical writer, publishing as author or co-author eight journal articles with an additional article currently under review. In addition, he is the recipient of several awards including the 2021 Outstanding Research Assistant Award from the Department of Civil & Environmental Engineering; the 2020 Distinguished Reviewer Award from the Journal of Infrastructure Preservation and Resilience; the 2020 Waheed Uddin Outstanding Graduate Student Award, 2nd Place, from the National Center for Transportation Infrastructure Durability & Life-Extension; the 2020 David C. Gross Scholarship, American Coal Ash Association Educational Foundation (ACAAEF); and the 2019 and 2020 Smart & Green Infrastructure Research Scholarship.

While accomplishing so much, Zhipeng has faced challenges at WSU that are shared by many international students. “The main difficulty for me and many international students is that you miss your family,” says Zhipeng. “The cultural differences are hard. Also, I studied English in China for 10 years, but the language is different when you get here.” These problems were enhanced over the past months with travel restrictions, quarantines, and isolation due to COVID.

Zhipeng anticipates his future as an engineer, hoping to defend his dissertation and graduate in 2022 and continue his research thereafter. Watch for his defense in the coming months on fly ash-based geopolymer for concrete infrastructure: development, characterization, application, and lifecycle assessment.

Publications

Li,Z., Shi, X. Effects of Nanomaterials on Engineering Performance of a Potassium Methyl  Siliconate-Based Sealer for Cementitious Composite. ASCE Journal of Materials in Civil Engineering, 2021, DOI: 10.1061/(ASCE)MT.1943-5533.0004148.

Li, Z., Xu, G., Shi, X. Reactivity of Coal Fly Ash Used in Cementitious Binder Systems: A State-of-the-Art Overview. Fuel, 2021, 301.

Li, Z., Fei, M., Huyan, C., Shi, X. Nano-Engineered, Fly Ash-Based Geopolymer Composites: An Overview. Resources, Conservation & Recycling, 2021, 168, 105334.

※ Lei, Z., Li, Z., Zhang, X., Shi, X. Durability of CFRP-Wrapped Concrete in Cold Regions: A Laboratory Evaluation of Montmorillonite Nanoclay-Modified Siloxane Epoxy Adhesive. Construction and Building Materials, 2021, 290. (co-first author)

※ Tang, Z., Li, Z., Fan, L., Gong, J., Zhong, J., Shi, X. Effect of Surface Tension, Foaming Stabilizer, and Graphene Oxide on the Properties of Foamed Paste. Journal of Nanoscience and Nanotechnology, 2021, 21(5), 3123–3133. (co-first author)

Li, Z., Shi, X. Graphene Oxide Modified, Clinker-Free Cementitious Paste with Principally Alkali-Activated Fly Ash. Fuel, 2020, 269,.

※ Gong, J., Li, Z., Zhang, R., Li, J., Shi, X. Synergistic Effects of Nano-montmorillonite and Polyethylene Microfiber in Foamed Paste with High Volume Fly Ash Binder. Journal of Nanoscience and Nanotechnology, 2019, 19(8), 4465-4473. (co-first author)

Li, Z., Gong, J., Du, S., Wu, J., Li, J., Hoffman, D., & Shi, X. (2017). Nano-montmorillonite modified foamed paste with a high volume fly ash binder. RSC advances7(16), 9803-9812.

Gong, J., Yu, L., Li, Z., Shi, X. Mechanical Activation Improves Reactivity and Reduced Leaching of MSWI Bottom Ash in a Cement Hydration System. Transportation Research Record, 2021. Under review (Corresponding author).

 

 

Webinar: Evaluating Sidewalk Infrastructure & Prioritizing Investment

Webinar Title

EVALUATING SIDEWALK INFRASTRUCTURE & PRIORITIZING INVESTMENT

Speaker(s)

Wes Marshall with Nick Coppola, University of Colorado Denver

Webinar Abstract

This project leverages advances in technology and increasing access to high-resolution remote sensing and spatial data to develop methods for inventorying sidewalk characteristics and static obstructions across an entire major city. In part 1 of this effort, we analyze city-scale sidewalk availability, width, and land coverage calculated from spatial data from aerial imagery (planimetrics). We then determine how much of a difference accounting for static obstructions makes when measuring the clear width of sidewalks in one city. Part 2 then combines planimetric sidewalk data with vehicle and pedestrian trip big data to develop a methodology to prioritize city areas in need of pedestrian infrastructure attention.

The results show an overall deficiency of sidewalks and indicate that deriving sidewalk availability, average width, and minimum clear width are feasible at the city scale. Moreover, the results suggest a significant decrease in the average clear width of sidewalks when accounting for static obstructions. Not accounting for static obstructions could lead to a gross overestimation of seemingly adequate sidewalks and an unrealistic assessment of sidewalk infrastructure and pedestrian accessibility. We then present a feasible and efficient method to prioritize pedestrian infrastructure in a city.

Primarily due to a lack of data, academic literature has scant research on sidewalks. In this project, we leveraged advances in remote sensing to bridge the data and research gap on pedestrian infrastructure in cities. These results will help cities that are lacking information rectify an unprecedented backlog of deteriorating pedestrian infrastructure.

About the Speaker

Wes Marshall is a Professor of Civil Engineering and affiliate faculty in Urban and Regional Planning at the University of Colorado Denver, director of the CU Denver Transportation Research Center, and co-director of the Active Communities/Transportation (ACT) research group. He is a Professional Engineer and focuses on transportation teaching and research dedicated to creating a more sustainable and resilient built environment, particularly in terms of road safety, active transportation, and transit. Other related teaching and research topics include street networks, parking, health, travel behavior, and scofflaw bicycling.  His recent book, Elements of Access, provides planners with the fundamentals of transportation engineering and engineers with the fundamentals of transportation planning. Having spent time in the private sector with Sasaki Associates and Clough, Harbour and Associates, Wes has been working on all this for the last two decades. A native of  Massachusetts, he is a graduate of the University of Virginia, the University of Connecticut, a recipient of the Eisenhower Transportation Fellowship, the Endeavour Fellowship, winner of the Wootan Award for Outstanding TRB Paper in the field of Policy and Organization, and winner of the Campus-wide University of Colorado Denver Outstanding Faculty in Research Award.

Jialuo He, Ph.D., receives the Outstanding Dissertation Award

The WSU Department of Civil and Environmental Engineering recently selected Jialuo He as the recipient of John Roberson Outstanding Dissertation Award. The title of his PhD dissertation is, “Development, Characterization and Modeling of Self-Healing Cementitious Materials.” Self-healing technology holds great promise in benefiting the durability and resilience of concrete infrastructure. While various external self-healing systems can improve the post-cracking recovery of mechanical properties of cementitious materials, few studies have explored their implications on concrete durability. Dr. He’s research responds to this critical gap by developing and investigating two external self-healing systems.

Dr. He’s dissertation demonstrates the great potential of self-healing technology in enabling concrete infrastructure with extended service life, which serves the interest of this nation. For instance, his study revealed that the self-healing system consisting of urea-formaldehyde microcapsules (containing calcium nitrite as the healant) and PVA microfibers could effectively reduce about 20-25% of the total shrinkage, 15-20% of the chloride migration coefficient, and 40-65% of the gas permeability of cementitious composite. Such a self-healing concrete could survive over 700 rapid freeze-thaw cycles, whereas the regular concrete counterpart could barely survive 60 cycles.

Jialuo He began his PhD program at Washington State University in August 2015. He has published nine academic papers in top-tier, peer-reviewed journals. In addition to his PhD research, Jialuo completed a two-year project that evaluated the performance of discrete sacrificial anodes in protecting steel rebar in salt-contaminated concrete, for which he was awarded the Simpson Strong-Tie Corrosion Research Scholarship. He also received the Richard Perteet Graduate Fellowship in Civil Engineering in 2017 and 2018. Congratulations Dr. He!

Webinar: Advanced Non-Destructive Evaluation (NDE) Methods for Structural Concrete Assessment

Speaker: Larry Olson, PE
President and Chief Engineer
Olson Engineering, Inc.

About the Topic: NDE is being increasingly used to assess conditions of aging structures and infrastructure such as bridges, buildings and dams as well as forensic evaluation of such concrete problems as honeycomb, void and cracking in new structures.  Specific NDE methods to be discussed for these applications include ultrasonic pulse velocity, tomography, radar scanning, impact echo scanning,  and surface waves.  Also to be discussed is data fusion with photogrammetry to overlay NDE results on surface images.  Specific learning objectives include understanding NDE methods for condition assessment of corrosion induced delamination of bridge and parking decks, how to map out rebar with 3-D scanning and analyses with radar, and imaging of internal void/honeycomb in concrete with velocity tomography.

About the Speaker: Larry D. Olson, P.E., is internationally known for his expertise in nondestructive evaluation (NDE) of civil infrastructure including dams, bridges, buildings, foundations, pavements, tunnels, etc. He has 40 years of consulting experience in structural condition assessment and monitoring, materials, pavement, geotechnical, geophysical, and vibration engineering. He holds BS Civil and MS (Geotechnical) Engineering degrees from the University of Texas at Austin which honored him as a distinguished alumnus in 2006. He is a member of ACI Committees 228 Nondestructive Testing, 342 Bridge Evaluation and 309 Consolidation.

Using Deep Learning for Accurate Detection of Bridge Performance Anomalies


Project Title

Using Deep Learning for Accurate Detection of Bridge Performance Anomalies

Researcher(s)

Dr. Farnoush Banei-Kashani, PI, University of Colorado Denver
Dr. Jimmy Kim, Co-PI, University of Colorado Denver
Dr. Chris Pantelides, Co-PI, University of Utah

Project Description

With this project, building on our prior work, our main goal is to introduce improved deep learning based anomaly detection methods for timely and accurate management and monitoring of bridge performance. Such methods can be used to perform predictive analysis of the bridge performance by accurate prediction of quantitative descriptors for the structure deterioration state (e.g., condition ratings) as well as any possible anomalies in the deterioration pattern of the bridge structure. Accurate prediction of these descriptors and anomalies are not only crucial in establishing maintenance priorities and performing proactive bridge monitoring with optimized resource allocation, but also more importantly essential for failure prevention.

Project Details

Project Visuals

Dr. Farnoush Banei-Kashani, PI
Yail Jimmy Kim.
Dr. Yail Jimmy Kim
Chris P. Pantelides.
Dr. Chris Pantelides

 

CEE Awards

Zhipeng Li has received the 2021 Outstanding Research Assistant Award within Civil & Environmental Engineering Department at Washington State University. Congratulations Zhipeng

Ph.D. Candidate Mehdi Honarvarnazari has received the 2021 Best Dissertation Award from both the Civil & Environmental Engineering Department and the Voiland College of Engineering & Architecture at Washington State University. Congratulations Mehdi!